Deident

deident()

Define a transformation pipeline

create_deident()

Create a deident pipeline

apply_deident()

Apply a 'deident' pipeline

apply_to_data_frame()

Apply a 'deident' pipeline to a new data frame

deident_job_from_folder()

Apply a pipeline to files on disk.

API

Functional interface to the deident methods.

add_blur()

De-identification via categorical aggregation

add_encrypt()

De-identification via hash encryption

add_group() add_ungroup()

Add aggregation to pipelines

add_numeric_blur()

De-identification via numeric aggregation

add_perturb()

De-identification via random noise

add_pseudonymize()

De-identification via replacement

add_shuffle()

De-identification via random sampling

Dataset

ShiftsWorked

Synthetic data set listing daily shift pattern for fictitious employees

starwars

Starwars characters

Utilities

category_blur()

Utility for producing 'blur'

adaptive_noise()

Function factory to apply white noise to a vector proportional to the spread of the data

lognorm_noise()

Function factory to apply log-normal noise to a vector

white_noise()

Function factory to apply white noise to a vector

from_yaml()

Restore a serialized deident from file

R6 Classes

BaseDeident

Base class for all De-identifier classes

Blurrer

Deidentifier class for applying 'blur' transform

Drop

R6 class for the removal of variables from a pipeline

Encrypter

Deidentifier class for applying 'encryption' transform

GroupedShuffler

GroupedShuffler class for applying 'shuffling' transform with data aggregated

NumericBlurrer

Group numeric data into baskets

Perturber

R6 class for deidentification via random noise

Pseudonymizer

R6 class for deidentification via replacement

ShiftsWorked

Synthetic data set listing daily shift pattern for fictitious employees

Shuffler

Shuffler class for applying 'shuffling' transform