deident() creates a transformation pipeline of 'deidentifiers' for the repeated application of anonymization transformations.

deident(data, deidentifier, ...)

Arguments

data

A data frame, existing pipeline, or a 'deidentifier' (as either initialized object, class generator, or character string)

deidentifier

A deidentifier' (as either initialized object, class generator, or character string) to be appended to the current pipeline

...

Positional arguments are variables of 'data' to be transformed and key-word arguments are passed to 'deidentifier' at creation

Value

A 'DeidentList' representing the untrained transformation pipeline. The object contains fields:

  • deident_methods a list of each step in the pipeline (consisting of variables and method)

and methods:

  • mutate apply the pipeline to a new data set

  • to_yaml serialize the pipeline to a '.yml' file

Examples


#
pipe <- deident(ShiftsWorked, Pseudonymizer, Employee)

print(pipe)
#> DeidentList
#>    1 step(s) implemented 
#>    Step 1 : 'Pseudonymizer' on variable(s) Employee 
#> For data:
#>    columns: Record ID, Employee, Date, Shift, Shift Start, Shift End, Daily Pay

apply_deident(ShiftsWorked, pipe)
#> # A tibble: 3,100 × 7
#>    `Record ID` Employee Date       Shift `Shift Start` `Shift End` `Daily Pay`
#>          <int> <chr>    <date>     <chr> <chr>         <chr>             <dbl>
#>  1           1 OWRHa    2015-01-01 Night 17:01         00:01              78.1
#>  2           2 XeROL    2015-01-01 Day   08:01         16:01             155. 
#>  3           3 5Neg2    2015-01-01 Day   08:01         16:01              77.8
#>  4           4 mEALu    2015-01-01 Day   08:01         15:01             203. 
#>  5           5 00660    2015-01-01 Night 16:01         23:01             211. 
#>  6           6 flPmk    2015-01-01 Night 17:01         00:01             142. 
#>  7           7 JdNHb    2015-01-01 Rest  NA            NA                  0  
#>  8           8 5n3RG    2015-01-01 Night 17:01         00:01             213. 
#>  9           9 lND1s    2015-01-01 Night 16:01         00:01             219. 
#> 10          10 MNluG    2015-01-01 Night 16:01         00:01             242. 
#> # ℹ 3,090 more rows